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Abstract

Systematic as well as discretionary trading strategies attempt to forecast future returns to then position themselves in

line with anticipated market moves. Intuitively, successful prediction should lead to a profitable trading strategy. By

most standard measures, however, it appears that many well-known trading strategies ought not to be successful at

all, as their success rate in predicting market moves is relatively low. Or to paraphrase loosely, most strategies, when

viewed from a certain angle, are not much better than a random coin toss. This note illustrates why a small edge over a

random positioning is all you need.
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1. Every Little Bit Helps

Over the course of the last decade, the overall performance of

the S&P 500 has been impressive, with an average annual return

of around 10%, see the historical price chart in Figure 1. Yet on

closer inspection, we find that the index had a positive return on

‘only’ 55% of the days. While we certainly would not expect a

much larger percentage of positive-versus-negative return days

for an aggregate of individual stock prices, it bears noting that

this small deviation from an even 50-50-split has over the long

run added up to a substantial cumulative return.

In the following discussion we investigate this phenomenon

more closely, specifically looking at whether ‘every little bit helps’

also carries over to systematic trading strategies.

Figure 1. The level of the S&P 500 over the last decade.

2. Predicting Returns

Any systematic trading strategy has at its core a model to predict

future returns. Trading decisions, i.e. a decision to go long or

short a market, are then made according to the sign and potentially

the magnitude of the predicted future return. Typical models

used for prediction are built on a variety of techniques from

statistics, signal processing and machine learning. There are

various measures of the goodness of fit for these models and

trading strategies in general, two of which we will look at more

closely here. Looking at these measures in isolation, they both

tend to suggest that such models are fairly bad. Yet we find that

when placed in context, what is ‘good’ or ‘bad’, is relative.

For illustration, let us consider a prediction model built on

linear regression. Choosing a predictor, e.g. yesterday’s market

return, one can then regress the given market’s return on the

following day on the predictor. Using a lookback of a year, such

a regression model would then be built with 250 sample points

(reflecting the number of business days).

Regression models are ubiquitous across the biological and

social sciences, specifically in economics. Denoting the predictor,

or independent variable, as x, and the variable to be predicted, the

dependent variable as y, linear regression finds a linear function

f(x) = y that fits the N observed data points best.1 A typical

measure of the goodness of fit of a linear regression model is the

coefficient of determination or R2, which is defined as

R2
≡ 1−

Sres

Stot

, (1)

where Sres measures the squared difference between the fit and

actual observation, and Stot represents the analogous discrepancy

from the sample mean ȳ = 1

N

∑
N

i=1
yi:

Sres =
N∑

i=1

(yi − fi)
2 and Stot =

N∑

i=1

(yi − ȳ)2. (2)

Intuitively, the R2 is best understood as the proportion of the

variance in the dependent variable (here, the future returns) that

is explained by the independent variable (here, the past returns),

with a perfect model having an R2 of 1 and an entirely unsuitable

model having an R2 of 0.2

1It does this by minimizing the discrepancy between the model fit and the

actual observation.
2The R2 also equals the square of the correlation coefficient when the regres-

sion includes an intercept.
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Figure 2. Simulation of PnL paths for three hit rates: h = 50%,

55% and 60%. PnL on any day can either be 1 or -1; each path

comprises 1000 days, representing four years of trading.

While ‘typical’ R2 values encountered in many regression

models3 in, e.g., biology or economics can be at least as high as

0.4, when it comes to predicting returns such values are unlikely

to be attained. This is a reflection of the low signal-to-noise ratio

present in financial data.4

The question then becomes: how can successful trading strate-

gies exist, if the models at their core have such a ‘bad fit’, espe-

cially when measured against the yardstick of other disciplines?

In this note we try and answer this question.

3. Successful Trading Strategies

The success of a trading strategy hinges on the relative number of

profitable trades, as well as the relative magnitude of the associ-

ated profit, when compared to unprofitable trades. Generally, a

higher frequency of profitable trades compared to that of unprof-

itable trades is desirable. For profits and losses of equal magni-

tude, and ignoring transaction costs (which we do throughout this

note), such a frequency split would lead to positive cumulative

PnL over time. We can of course imagine scenarios where just

a few instances of extremely profitable trades lead to an overall

gain, but, in the extreme, this type of strategy is not robust, as it

is possible that those few instances are merely due to luck, and

can equally likely occur in the other direction, causing substantial

losses.

We can define the hit rate, the second of our measures of how

good our model is, as the fraction of the number of profitable

days out of all days in which a position was taken. To get a

feeling for realistic and attainable hit rate values, we conduct

a toy experiment: we fix the hit rate h and draw 1000 random

numbers X which can only take the values 1 (a profit) and -1 (a

3Here we have in mind models with one independent variable; adding more

explanatory variables can only increase the R2, often up to values larger than 0.5.
4Practitioners are also wary of overfitting, which can easily be achieved with

non-linear models. Overfitting is effectively the removal of most of the discrep-

ancy between the model fit and the actual observation, without the resulting model

then generalizing to unseen data.

Figure 3. Illustration of a regression fitting returns to a predictor

variable. The shaded red region is the extent of the scatter of

samples around the model fit; the larger the scatter, the lower the

R2. Using the linear regression model to determine the position

for a trade, the striped triangular regions represent unsuccessful

trades, where the model predicts a negative or positive return, but

the actual realization is a positive or negative return, respectively.

loss), such that the number of 1s is equal to h × 1000.5 Each

draw represents a trading day. Summing up the resulting draws

of 1s and -1s gives us a cumulative PnL curve. For each hit rate,

we plot ten such curves in Figure 2, and we test three different

hit rates. For a given hit rate all cumulative PnL curves of course

end at the same point, as the total number of 1s and -1s per path

is identical; they also have the same IR (the ratio of annualized

return over annualized volatility). As we can see, hit rates of 50%

and 55% lead to IRs of 0 and 1.6, respectively. A hit rate of 60%

results in an IR of 3.2. IRs between 0 and 2 can thus be viewed

as bounds on what hit rates are realistic in practice for strategies

of slow to medium frequency.

4. An Edge Is All You Need

Our toy experiment indicates that a moderate hit rate marginally

above 50% can lead to satisfactory performance. We now want to

link this hit rate to the quality of the model generating the return

predictions. Earlier, we introduced the R2 as a measure of the

quality of fit of a linear regression model. To gain some intuition

on whether R2 values typically observed when trying to predict

market returns can be reconciled with positive performance, we

set up another stylized example.

Consider a setting where linear regression is used for predict-

ing future returns, the ‘noise’ not captured by the linear regression

is due to unknown and/or unobserved variables that affect the

returns, and the underlying market dynamics are invariant over

time 6. Figure 3 illustrates this setup. The regression scatter -

5We can also look at this from a theoretical point of view: in our experiment

the probability of a profit is P (1) = h and that of a loss is P (−1) = 1− h. The

expectation and variance of the binary random variable X are E(X) = 2h− 1
and Var(X) = 4h(1− h), respectively.

6This is arguably the strongest assumption we will make.
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indicated in the graph by the shaded region - that drives the R2

away from one represents sample returns that the linear model

does not and will not fit well in the future.

It is quite clear then which scenarios will lead to a profitable

day and an increase in hit rate, and which will not: knowing the

value of the predictor variable at time t, we read off the predicted

future return as given by the linear regression. As long as the

realized return on t+ 1 has the same sign as the predicted return

(and the according position taken), we will make a profit on t+1.

The lined triangular areas thus indicate scenarios where the linear

regression model fails to capture the correct sign of the future

return.

Figure 4. Relationship between R2 and hit rate in a stylized

setting, where linear regression is used to predict future returns

and thus to determine the position taken.

By varying the width of the scatter and thus the value of R2,

we vary the size of the lined triangular areas relative to the entire

shaded region. Using geometric arguments, specifically that a

successful ‘hit’ falls into the correct quadrant of the coordinate

system, we can calculate the associated hit rate for a given R2.

This gives us the relationship between R2 and hit rate depicted

in Figure 4. One parameter that we have not mentioned so far is

the slope of the regression line (which represents the relationship

between observed and predicted returns in our case). Running the

same toy experiment with a modified slope turns out to only affect

the range of R2 observed, but traces the exact same relationship.

Figure 4 in fact shows three curves collapsed onto one, with an

increase in slope resulting in a higher R2 (while keeping the width

of the scatter the same).

We can see that the relationship between R2 and hit rate is

monotonic, but more importantly we find that R2 values in the

low single digits can result in a hit rate consistent with positive

performance. Conversely, high R2 as maybe are typical in other

fields, would result in huge hit rates. When building predictive

models in systematic trading we therefore need not expect the

levels of goodness of fit that are found in other disciplines. It

turns out that a very moderate edge, or small predictive power,

suffices to build a functioning trading strategy.

5. Conclusion

This note illustrates that a small edge in predictive power can lead

to a successful trading strategy in the long run. While this small

edge is not trivial to come by, it is nevertheless reassuring that we

do not need perfect foresight to build a profitable strategy.

Furthermore, we can often benefit from diversification, see

Tricker and Mitchell (2017) for an illustration of diversification

in the context of trading a range of different markets. Beyond

diversification via the trading of different markets, we can achieve

diversification by trading a variety of different strategies. Com-

bining different markets for which individually low hit rates are

obtained, and then combining different strategies, can yield a

portfolio with an overall higher percentage of positive return days

than the underlying individual hit rates.

References

E. Tricker and M. Mitchell. Market Diversification. Research

Note, Graham Capital Management, August 2017.

Legal Disclaimer

THIS DOCUMENT IS NOT A PRIVATE OFFERING MEMORANDUM AND DOES NOT CONSTITUTE AN OFFER TO SELL, NOR IS IT A

SOLICITATION OF AN OFFER TO BUY, ANY SECURITY. THE VIEWS EXPRESSED HEREIN ARE EXCLUSIVELY THOSE OF THE AUTHORS

AND DO NOT NECESSARILY REPRESENT THE VIEWS OF GRAHAM CAPITAL MANAGEMENT. THE INFORMATION CONTAINED HEREIN IS

NOT INTENDED TO PROVIDE ACCOUNTING, LEGAL, OR TAX ADVICE AND SHOULD NOT BE RELIED ON FOR INVESTMENT DECISION

MAKING.


