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Abstract
Successful systematic trading strategies depend on some element of predictability of market behavior, however small.

When trading futures, signals seek to predict market returns, while predictions of market volatility and correlations are

made to allow for risk management of the portfolio. In this note we take a brief look at how easily each of these market

variables is predicted and what implications this has for systematic trading.
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1. Introduction

Financial markets are largely unpredictable. For any given market,

for example, it is not possible to say with any degree of certainty

if this market will move up or down tomorrow, in the coming days

or weeks. Yet there is alpha embedded in past market data that

can be exploited when trading a large number of markets, where

even a small edge (see Bethke and Tricker (2019)) in individual

predictability aggregates to give a succesful trading strategy via

diversification (see Tricker and Mitchell (2017)). While market

returns are difficult to predict, volatility and correlation tend to

be ‘stickier’, meaning that they do not change as rapidly. This

is an advantage when trying to predict their levels in the future.

The technical term for ‘stickiness’ is autocorrelation, which, as

the name suggests, measures the correlation between values of

the same variable at different time lags. When using a one-day

lag, for example, it is the correlation between values of the same

variable on consecutive days.

2. A Short Excursion

While returns are easily observed, the ‘true’ volatility or correla-

tion are not, and usually a trailing sample estimate is used for both

of these. Volatility is typically calculated as a trailing standard

deviation of returns and correlation as a sample correlation on the

same lookback. These trailing estimates are inherently smoothed,

making them sticky by construction. To avoid this, and as we are

trying to compare predictability of volatility and correlation to the

predictability of returns, we proxy volatility by squared returns

and correlation by cross-product of returns.

Before examining the autocorrelation of returns, squared re-

turns and cross-product of returns for a range of futures markets,

we set the scene and derive some theoretical results for indepen-

dent, identically-distributed (IID) returns. Normally distributed

IID returns are often used to model financial markets, offering

theoretical tractability, despite shortcomings such as the absence

of fat tails. The results we establish will serve as a benchmark

with respect to which we can better interpret our later findings.

Let Xt ∼ N(0, 1) be a random variable that represents our

return at time t. Similarly, we have a return Xt+s ∼ N(0, 1) at

a later time t + s. In our model, the two returns are indepen-

dent, and each has a mean and a volatility equal to zero and one,

respectively. Their covariance is then given by

Cov(Xt, Xt+s) = E(XtXt+s) = E(Xt)E(Xt+s) = 0.

As anticipated, the covariance (and thus correlation1) is zero.

What about squared returns? The squared returns in our model

do not have a mean of zero. Instead, we find that

E(X2
t
) = E(X2

t+s
) = Var(Xt) = Var(Xt+s) = 1,

which allows us to calculate
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= 0.

Again, for IID returns, the squared returns also display zero

autocorrelation.

3. Autocorrelation of Returns, Volatility and
Correlation

We are now ready to calculate time series of returns, squared

returns and cross-products of returns for a range of financial fu-

tures markets and determine the autocorrelation for each. The

results are aggregated across markets and presented in Figure 1.

We find that autocorrelation is extremely low if at all present for

consecutive one-day returns, while it is much higher for squared

returns or cross-product of returns. For instance, at 5 days, auto-

correlation is 0 for returns, while it is 18% for squared returns,

and 10% for return cross-products. There is also a clear pattern

of larger autocorrelation at smaller lags for squared returns and

1The correlation ρ between two random variables X and Y with volatilities

σX and σY is defined as ρ =
Cov(X,Y )

σXσY

. When σX = σY = 1 we thus have

ρ = Cov(X,Y ).
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return cross-products. This phenomenon, which does not exist

for IID returns, is termed ‘volatility clustering’ in the context of

squared returns and/or volatility, meaning that volatile periods are

not spread evenly in time, but rather take turns with calmer peri-

ods. Or, to cite Mandelbrot who first observed the phenomenon,

see Mandelbrot (1963), “large changes tend to be followed by

large changes - of either sign - and small changes tend to be

followed by small changes”. It has since been documented and

analyzed by a variety of researchers, such as Ding et al. (1993)

and Cont (2001), just to name some prominent examples.
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Figure 1. Autocorrelation of returns, squared returns and return

cross-products at different lags and aggregated across markets.

4. Predicting Returns, Volatility and
Correlation

Variables that exhibit higher autocorrelation tend to stay closer

to their previous values than variables that do not. We can illus-

trate how this impacts predictability by measuring the coefficient

of determination, R2, in a regression for each of our variables.

High values of R2 indicate a strong (linear) relationship between

the variables that are being regressed, with higher R2 implying

greater predictability. For each time point, we regress the average

over n days of the given variable in the future, on the average

over n days of that variable in the past.
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Figure 2. R2 for prediction - realization regressions of returns,

squared returns and return cross-products at different horizons

and aggregated across markets.

5. Conclusion

Despite the unpredictability of financial markets, we find that

- fortunately - some predictability remains. Systematic trading

models predict returns to build trading signals, and attempt to

harness whatever alpha they can find. Due to the low autocor-

relation of returns, this is a challenging problem. Volatilities

and correlations are somewhat easier to predict because of their

disctinctly non-zero autocorrelation. This can be leveraged in the

management of risk of said systematic trading strategies.
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