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Abstract

This note is an in-depth study of constrained mean-variance optimization in the context of combining several systematic

trading signals. We analyze whether the solution of such optimization depends linearly on the input variables. The

conclusion is the contrary that such portfolio optimization exhibits a multitude of non-linearity. We conclude by discussing

implications for investors.
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1. Introduction

The goal of portfolio optimization is to determine an optimal

combination of assets within a portfolio according to some ob-

jective. An optimal portfolio can have many advantages, for

example, lower volatility, higher risk-adjusted returns or balanced

exposures. A critical development was modern portfolio the-

ory, first described by Markowitz (1952), which introduced the

idea of mean-variance analysis and a mathematical framework

for assembling a portfolio of assets such that the expected re-

turn is maximized for a given level of risk. In the years since,

mean-variance optimization (MVO) has become a commonly

used portfolio construction method. However, optimizing a port-

folio can come at the cost of transparency – particularly in terms

of portfolio attribution. In this Research Note, we provide some

mathematical results for why it is not always possible to precisely

attribute performance in optimal portfolios.

Three Key Equations

In a typical systematic trading strategy, several signals are sup-

plied as expected returns ri, which are combined linearly into

a single set r̄ =
∑

i
airi using signal weights ai. The portfolio

is then optimized subject to a volatility target, plus one or more

linear constraints such as total capital usage, maximum position

size limits, etc. Denote by w = O(r) the function that associates

an optimized portfolio w with a set of expected returns r. One

might reasonably expect several forms of linear behavior:

O(r) ∝ Mr, for some matrix M, (1)

which intuitively means that a stronger/weaker expected return

leads to a proportionally bigger/smaller position;

O (
∑

i
airi) =

∑

i
ciO(ri), for some ci, (2)

which expresses the optimized blended portfolio as a linear com-

bination of optimized component portfolios;

[ci] ∝ [ai] , for the ci, ai above, (3)

which means that a signal’s contribution in the optimized portfolio

is proportional to its contribution in expected returns.

In the pages that follow, we work progressively to show that

all of these expectations can be rejected. Non-linearity is present

at multiple levels in portfolio optimization.

2. MVO with Volatility Target

Consider a set of expected returns r for a portfolio of assets

having market covariance matrix Σ.

It is well known that in the absence of constraints we can solve

the MVO problem with portfolio weights w such that w ∝ Σ
−1

r.

Note that we can set M = Σ
−1 to satisfy the linearity condition

in Equation 1, which provides a motivation for the results that

follow.

More specifically, if we want a portfolio with volatility σ we

can specify the problem as:

max
w

r
′
w, such that w′

Σw ≤ σ2, (4)

for which there exists a closed-form solution1 for the allocation

weights:

w =
σ√

r′Σ−1r
Σ

−1
r. (5)

Now suppose we have two sets of expected returns r1 and r2.

For each set we can solve the MVO problem:

w1 =
σ

√

r′
1
Σ−1r1

Σ
−1

r1,

w2 =
σ

√

r′
2
Σ−1r2

Σ
−1

r2.

If we form a blended portfolio as a combination of r1 and r2

denoted by r̄ = a1r1+a2r2, we can similarly solve for the MVO

weights as:

w̄ =
σ√

r̄′Σ−1r̄
Σ

−1
r̄

=
σΣ−1(a1r1 + a2r2)

√

(a1r1 + a2r2)′Σ−1(a1r1 + a2r2)
.

1See Appendix A.
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From which it follows immediately that w̄ 6= a1w1 + a2w2,

rather:

w̄ =
L1

L̄
a1w1 +

L2

L̄
a2w2,

where we define

L =
√
r′Σ−1r,

and

L̄ =
√
r̄′Σ−1r̄ =

√

(a1r1 + a2r2)′Σ−1(a1r1 + a2r2).

The post-MVO weights between the two sets change from ai to

ci = (Li/L̄)ai. Note that as L̄ depends on ai, ci is not a linear

transformation of ai, which means that MVO with volatility target

does not satisfy the linearity condition in Equation 3.

3. Adding a Linear Constraint

Consider adding a linear constraint to our MVO problem with

volatility target:

max
w

r
′
w, such that

{

w
′
Σw ≤ σ2,

k
′
w ≤ b.

(6)

For example we can set up a maximal capital usage constraint by

setting k = 1, the unit vector.

For ease of notation, it is convenient to define several auxiliary

variables:

F = k
′
Σ

−1
k, G = r

′
Σ

−1
r, H = k

′
Σ

−1
r, (7)

J =

√

σ2F − b2

FG−H2
, if σ2F − b2 ≥ 0. (8)

When the volatility target is not too tight relative to the linear

constraint (expressed by the technical condition σ2F − b2 ≥ 0)

there exists a closed-form solution2 for the allocation weights,

which are bounded by both volatility and linear constraints:

w = JΣ−1
r+

b−HJ

F
Σ

−1
k. (9)

As in the previous section, suppose we blend two sets of

expected returns r̄ = a1r1 + a2r2, we can form the optimized

blended portfolio:

w̄ = J̄Σ−1
r̄+

b− H̄J̄

F̄
Σ

−1
k

= J̄Σ−1 (a1r1 + a2r2) +
b− H̄J̄

F̄
Σ

−1
k.

Here we see that w̄ now has a residual component proportional to

Σ
−1

k that is not a linear combination of ri, rejecting Equation 1.

We can take this analysis further by considering the individual

component portfolios formed by MVO on each set of expected

returns with both volatility target and linear constraint:

w1 = J1Σ
−1

r1 +
b−H1J1

F1

Σ
−1

k,

w2 = J2Σ
−1

r2 +
b−H2J2

F2

Σ
−1

k,

2See Appendix B.

and ask whether there exist coefficients ci such that

w̄ = c1w1 + c2w2.

Note that all three portfolios w̄,w1,w2 are bounded by both

volatility and linear constraints. The linear constraint necessarily

implies that c1 + c2 = 1. However, unless w1 and w2 are

equal, their correlation will be less than 1, and the volatility of

c1w1 + c2w2 will be less than σ. We conclude that there must

be a non-zero residual portfolio ǫ involved:

w̄ = c1w1 + c2w2 + ǫ,

which means the optimal portfolio w̄ is not a linear combination

of optimized component portfolios wi, rejecting Equation 2.

4. A Numerical Example

We present a simple example of two sets of signals for 3 assets.

(Table 1). Further, we assume Σ = I3 the identity matrix, σ2 =
0.5, k = 1 and b = 1. We observe that the optimal solution to the

portfolio of combined signals is different by a non-zero residual

component ǫ compared to the combination of the individually

optimized portfolios.

a1 = 0.5 a2 = 0.5

r1 r2 r̄
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c1 = 0.556 c2 = 0.556
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∑

i
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Table 1. A numerical example demonstrating how a portfolio

cannot be decomposed into its constituents. Instead a residual

component remains.

We can also construct a graphical representation of this result,

demonstrated in Figure 1. The 3-asset portfolios that we consid-

ered can be represented by points in 3-dimensional space. The

volatility target is represented by a sphere (since the equation of a

sphere is given by x2 + y2 + z2 = r2) , which intersects with the

linear constraint represented by a plane. The intersection, which

is a circle, represents all possible optimized portfolios that are

bounded by both constraints. The portfolios w1, w2 and w̄ are

distinct points on this circle. The dotted line between w1 and w2

represent portfolios that are linear combinations c1w1 + c2w2

that lie on the linear constraint. However, it is easy to see that

these portfolios are inside the sphere and fall short of the volatility

target. Similarly, w̄ does not lie on the dotted line.
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Figure 1. A grahpical representation of our 3-asset portfolio

problem. Observe that no points on the line connecting w1 and

w2 lie on the surface of the sphere. This means that a linear

combination of w1 and w2 that satisfies the linear constraint,

cannot also satisfy the volatility constraint defined by the sphere.

5. Conclusion

While portfolio optimization is a commonly used and effective

tool to enhance risk-adjusted returns, its use can come with the

expense of reduced transparency in terms of portfolio attribution.

In particular, when evaluating a trading strategy constructed

from multiple signals combined with portfolio optimization, in-

vestors should not necessarily expect portfolio and performance

attributions to add up precisely in a simple linear fashion.

Rejection of Equation 1 means portfolio allocation weights

are not directly proportional to signal strength. Rejection of

Equation 2 means an optimized portfolio that combines several

component signals has a residual piece that causes its perfor-

mance to deviate from aggregated performance of underlying

component strategies. Rejection of Equation 3 means that giving

one signal a higher weighting may not lead to a commensurate

increase of its contribution in the combined portfolio.

Appendix A

Derivation of Equation 5 by solving Equation 4. For a constrained

optimization problem we use Lagrangian multipliers method:

r = 2λΣw,

w =
1

2λ
Σ

−1
r, (10)

σ2 = w
′
Σw =

1

4λ2
r
′
Σ

−1
r,

1

2λ
=

σ√
r′Σ−1r

, (11)

substituting Equation 11 into Equation 10 yields the solution.

Appendix B

Derivation of Equation 9 by solving Equation 6. We use La-

grangian multipliers for two constraints:

r = 2λΣw + ηk,

w =
1

2λ
Σ

−1(r− ηk), (12)

σ2 = w
′
Σw =

1

4λ2
(r′ − ηk′)Σ−1(r− ηk), (13)

b = k
′
w =

1

2λ
k
′
Σ

−1(r− ηk). (14)

Combining Equations 13 and 14 to eliminate λ, using auxiliary

variables in Equation 7, we get:

(

σ2F 2 − b2F
)

η2−2
(

σ2HF − b2H
)

η+
(

σ2H2 − b2G
)

= 0,

which is a quadratic equation of η, whose discriminant is

D = 4b2(σ2F − b2)(FG−H2).

Since FG−H2 ≥ 0 (property of Σ being a covariance matrix),

D ≥ 0 if and only if σ2F − b2 ≥ 0, in which case the solution of

η is

η =
H

F
− b

FJ
. (15)

Substituting this back into Equation 14 gives us

λ =
1

2J
. (16)

Equations 12, 15, 16 together gives the closed-form solution

Equation 9.
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