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Abstract
Interpretability is an increasingly vital issue in machine learning. Computerized statistical modeling has become

the de facto paradigm for quantitative decision-making in any number of fields, including healthcare, advertising,

investing, and more. And yet, the relative opacity of many of these techniques can pose a real issue in sensitive

applications. Furthermore, the inability to interpret a model’s behavior removes an essential part of the feedback

loop for the practitioner, who needs to have a good understanding of the model to know when it’s bound to fail, or

where it can be improved. In this note, we first review the canonical statistical machine learning problem, before

describing the issue of model interpretability and some of the recent developments. We list some examples of

both interpretable and non-interpretable models and explain some of the differences.

Keywords
Machine Learning, Statistical Modeling, Interpretability, Complexity

1Quantitative Research Analyst
2Senior Quantitative Research Analyst
3Chief Investment Officer of Quantitative Strategies

1. Introduction

As machine learning (ML) methods have become more pow-

erful and ever more ubiquitous, interpretability has come to

the fore as a vital issue for practitioners and decision-makers

whose work relies on these models. In many applications,

the ability to understand the outputs generated by a model is

as important as the outputs themselves, if not more so. Us-

ing models in a pure ‘black box’ fashion invites a host of

potential issues. A model might encode some hidden implicit

bias, for example, which isn’t evident to the user. Such biases

could prove disastrous in sensitive applications like medical

diagnosis or assessing creditworthiness. Or, there might exist

regions of the model’s parameter space for which the model is

especially sensitive and prone to instability. Perhaps most im-

portantly: without a deep understanding of the model’s inner

workings, it will be difficult or even impossible to understand

when and why the model might fail to work as intended.

All of these issues and more arise in the application of ML

to trading and investing. When deploying a model, a manager

needs to understand why the model does what it does; he

or she needs to have some idea about the effects the model

purports to capture and the risk factors on which the model

loads. For a fund with external clients, the manager needs to

be able to explain his/her positioning to investors. And if the

manager doesn’t understand the decisions made by the model,

it may not be apparent when something ‘breaks.’

Of course, potential pitfalls aren’t the only reason to care

about interpretability. Good researchers are inherently curious

and wish to learn from their work. There might be situations

when a model works unexpectedly well. If the model’s de-

signer can determine why that is, he or she might be able to

garner some new insight or uncover something that wasn’t

obvious about their problem.

A model’s interpretability is closely (and in some sense,

inversely) related to the model’s complexity. In this note, we

review some basic results about capacity and regularization

in ML, drawing connections to the notions of robustness and

generalization. We point to recent work on interpretability and

explainability in modern ML. Finally, we turn the discussion

back to investing and give some more thought to how these

issues arise in quantitative finance.

2. The Statistical Learning Problem

Fitting a statistical machine learning model boils down to find-

ing some function f that gives a good fit to some sample data,

and hopefully generalizes well to any new data it might see.

Given some datapoints {(x1, y1), (x2, y2), · · · , (xn, yn)}, we

wish to build a function f which approximately maps each

xi to the corresponding yi, or f(xi) ≈ yi. The most popular

framework to guide our search revolves around an idea called

empirical risk minimization.

2.1 Empirical Risk Minimization

The empirical risk1 is generically some average loss over the

data:

R(f) =
1

n

n∑

i=1

ℓ (yi, f(xi)) ,

and is supposed to serve as a proxy for the expected true risk

of the model.

1Note that in this context, “risk” does not refer to any kind of financial or

market risk. Here it simply refers to the quality (or lack thereof) of a model’s

fit to some data.
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Here, the loss function ℓ represents some kind of error in

the approximation that we therefore wish to minimize. To

begin with, we need to specify a class of functions, or a

hypothesis space, from which our solution will be drawn. We

might consider the space of linear functions, for example,

having the form

f(xi) = x′

i
w + b.

This is a relatively simple model class (but a highly inter-

pretable one, as we’ll discuss later on). In this case, a common

measure for the empirical risk is the mean-squared error:

R(f) =
1

n

n∑

i=1

(yi − f(xi))
2 =

1

n

n∑

i=1

[yi − (x′

i
w + b)]

2
.

Often, we wish to restrict the hypothesis space even further

by regularizing the empirical risk, meaning that we add an

extra term to be minimized:

R̃(f) =
1

n

n∑

i=1

ℓ (yi, f(xi)) + λΩ(f).

Here Ω is a function which penalizes the complexity of f , and

λ is a constant which controls the strength of that penalty. In

the case of linear regression, a common choice for Ω is the

squared norm of the solution vector w:

R̃(f) =
1

n

n∑

i=1

(yi − x′

i
w)2 +

1

2
λ‖w‖2. (1)

This model2 is known as ridge regression, and this penalty

has the effect of discouraging large values of w3.

Another way to think about this penalty is to consider its

effect on the ‘prior’ probability we’re implicitly giving to cer-

tain kinds of solutions. Eqn. (1) now says that we’re interested

in solutions w which minimize the usual mean-squared-error

while not being too large in magnitude. We’re essentially

putting further restrictions on the space of functions we’re in-

terested in. These sorts of ideas – which we’ll explore further

in the next section – become even more important when we

consider more powerful and complex models, such as deep

neural networks.

2.2 Restricting the Hypothesis Space

Why would we ever wish to restrict our hypothesis space

when building a model? Surely we want the best fit possible?

As it turns out, that’s not necessarily true. Depending on the

problem at hand, there may be a good reason to expect the so-

lution to have a certain form or at least certain characteristics.

Furthermore, ML practitioners often need to keep in mind

a crucial trade-off between capacity – the ability to model

complicated phenomena – and regularization. Some kinds of

2Note that for simplicity we’ve omitted the intercept term b; pretend that

we appended a column of 1’s to our input data and folded the intercept into

the vector w.
3It also has an interesting effect on the role played by the covariance of

the x’s when finding the solution.

Figure 1. An example of the failure of a very high-capacity

model versus a very simple one. The black data points were

generated according to a linear model corrupted by noise

and outliers. The blue line shows the result of a linear least

squares fit to the data, whereas the red curve was generated by

an un-regularized ten-layer feedforward neural network. The

mean-squared-error of the neural network is (much) lower

than the linear regression on the training data, but it’s clearly

not an appropriate model. If we were to naively trust this

model without knowing better, we might infer some very

complicated (and imaginary) dynamics from this dataset.

ML models (neural networks, for example) are known to be

‘universal approximators,’ capable of representing nearly any

continuous function with arbitrary accuracy. But it’s often the

case that complicated functions aren’t robust; they might be

sensitive to outliers, or they might overfit the sample data, but

become unstable or unreliable when presented with unseen

inputs. Fig. 1 shows a basic illustration of this phenomena.

Nevertheless, some phenomena cannot be described by

simple models. Many kinds of data have inherent nonlinear

structure and require something more complicated to be mod-

eled accurately. But as we use more powerful tools, we need

to be wary. Because of their flexibility, we can often ‘tune’

high-capacity models until they give us the fit we want.

As we’ll consider further in the next section, there is yet

another important reason to consider restricting the hypothesis

space for model building: we might wish to build models that

we can understand. The capacity of a model, its ability to

generalize well, and its interpretability are all closely related,

but there are important distinctions. High-capacity models do

not always overfit, simple models do not always generalize

better, and interpretability is not antonymous with complexity.

Nevertheless, without access to the data-generating process

(or unlimited out-of-sample data), we need some way to feel

confident that our models will behave robustly in the future.

In this case, we often lean on our ability to grasp the model’s

output.
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Figure 2. ‘Machine Learning’ by Randall Munroe, under a

Creative Commons Attribution-NonCommercial 2.5 License.

https://xkcd.com/1838/

3. Model Interpretability

Interpretability is not a formally defined concept but generally

refers to the ability of a human to understand the cause of

some output or decision. It’s useful to make a distinction

between two kinds of model interpretability [Molnar (2019)].

Intrinsically interpretable models are simple by construction;

either they have some straightforward functional form, or

their complexity has been restricted by regularization. The

behavior of these models can be understood because their

structure is not overly complicated. When models are not

intrinsically interpretable, we can still talk about post hoc

interpretability, referring to a set of methods and tools for

understanding complex models after they’ve been trained.

There is a growing body of work, for example, on distilling

and understanding the output of very deep neural networks

[Simonyan et al. (2014)].

Models are usually not categorized as either interpretable

or not interpretable. Rather, they lie on a spectrum of inter-

pretability depending upon their complexity and how well one

can track down the cause of the model’s output (see Figure 3).

3.1 Intrinsically Interpretable Models

Intrinsically interpretable models include linear models, rule-

based models, and decision trees, where in each case the

sequence of transformations used to transform the input to the

output remain understandable throughout the entire process.

These so-called ‘white-box’ models allow the user to stay in

control each step of the way, so that each decision is traceable

in a transparent way to the corresponding inputs.

In the case of linear models, the influence of each feature

is simply encoded by the weight given to that feature. The

model might use information about feature interactions in

Figure 3. A representation of the tradeoff between flexibility

and interpretability, using different statistical learning meth-

ods. In general, as the flexibility of a method increases, its

interpretability decreases.

order to derive these weights (e.g. the covariance between

inputs plays a key role in the ordinary least squares solution),

but nevertheless once the model has been fit there is a very

simple and clear relationship between perturbations of the

input and resulting effects on the output.

Decision trees are another popular method, in which rules

are represented on a tree-like structure where each branch

represents some “test” on the input and is therefore easy to

interpret. Figure 4 shows an example where the objective is

to classify points from two classes (TRUE or FALSE). Once

we train a decision tree on this dataset, the resulting tree

model (Figure 5) runs tests at each of its node on one of the

two features x1 and x2, using cut-off values to branch and

ultimately produce a final decision at the bottom of the tree.

In this case, training the model amounts to finding the optimal

cut-off values at each node in order to minimize some cost

function of our choice.

Figure 4. Simple example of a dataset with two features x1

and x2 spread over two classes (TRUE or FALSE).
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Figure 5. Example of a decision tree after it was trained on

the data from Figure 4. Starting from the root node at the top,

each node will test one of the two features from the data in

order to correctly classify each point.

3.2 Black Box Models

Random forests and neural networks, on the other hand, are

examples of models that are usually harder to interpret. Unlike

the previous group, the complicated or intricate structure of

these models means their decisions cannot be easily traced

back to particular inputs or combinations of inputs.

Random forests, aptly named as they consist of large col-

lections of individual decision trees, are an example of so-

called ensemble models. Ensembles work by combining the

outputs of a collection of sub-models to reduce idiosyncratic

variance. Fundamental to this approach is the idea that the

sub-models are meaningfully diverse from one another so

that their outputs are roughly un-correlated. Random forests

achieve this diversification by construction, training each tree

on random subsets of the data, or sometimes using only ran-

dom feature subsets when deriving node splits. The upshot

is that where individual decision trees are generally quite in-

terpretable, random forests introduce quite a lot of opacity by

combining those trees (and introducing randomization along

the way).

Neural networks perform a hierarchical feature engineer-

ing using chained nonlinear function compositions. Starting

from the raw input data, successive ‘layers’ are fed the output

from previous layers, mixing and deforming that output in

such a way that the final layer can more easily make some

task-specific decision. Figure (6) shows visually how these

structures can become quite ornate. Through their successive

layers, neural networks can fit the data in intricate and often

new ways. However, this is at the expense of interpretability

as the succession of layers renders the relationship between

inputs and outputs opaque.

Finally, in addition to their more convoluted nature, these

‘black-box’ models are usually applied to data with many

features or complicated structure, making it even harder to

sift through the vast parameter space and gain insight. As

described earlier, it may also come at the expense of a higher

risk of overfitting [Nguyen et al. (2015)]. Besides, the large

number of meta-parameters to fine-tune for these models also

mean that they must be trained on very large datasets, which

can be hard to come by in some applications.

Figure 6. Examples of complicated neural network archi-

tectures [So (2019)]. Each block represents some kind of

transformation of the data (occasionally nonlinear), and the

arrows indicate the direction in which data passes through the

network (notice that data occasionally “skips” some layers

and gets recombined downstream). As one can imagine, there

is no easy way to understand the relationship between the

inputs and the final output in a model like this!

Significant research is being done in the field to make deep

learning more interpretable and give the user a meaningful

global view of each layer in the network. These techniques

attempt to carry meaning from one layer to the next via the use

of creative visualizations. This is often used side-by-side with

the chain of transformations from the input features to the

output of the model in order to gain some insights regarding

the final decision.

3.3 Scope and Evaluation of Interpretability

In some instances, one may only need to interpret locally a

specific decision from a ‘black-box’ model. These models,

whose fitting function f may be quite complicated, can be

approximated over some small region using a simpler model.

In other words, one can fit a simple model between a subset

of the input and the output of the black-box model to under-

stand its behavior locally. Even if the simple model does not

generalize well to the entire dataset, as long as it behaves simi-

larly to the black-box model locally, it can help us understand

things better. This procedure can even be extended globally

by fitting the simpler model to the output of the black-box
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model on the entire dataset so that the simple model becomes

a surrogate model. Of course, due to the simpler nature of

the surrogate model, it can be hard to extend it to the entire

dataset while keeping the approximation faithful, and so local

approximation is often preferred [Ribeiro et al. (2016)].

It not exactly clear how to express the concept of inter-

pretability in terms of a statistical objective function. However,

some research is being done in the field to ‘grade’ models

and assess the interpretability of their decisions after the fact.

One example is in the medical field, where neural networks

can help radiologists to locate a tumor or nodules in the lungs.

The models are graded in this case not only on their ability to

correctly provide a ‘yes/no’ diagnosis, but on their ability to

actually locate the tumor. Doctors can then be asked to eval-

uate post hoc the interpretabilty of the models by inspecting

the indicated location. (Of course, such evaluation requires

the user be at least as good as the model and have the required

technical background.) Protocols of this kind place the model

in a specific and understandable role so that doctors are able

to provide patients with the best possible care.

Pure model accuracy is not the only goal in all machine

learning applications. How the models come up with a result

can often be just as important. Users may learn a lot by com-

ing to understand how models make their decisions, gaining

new insight, and getting valuable feedback for improving the

performance of the model itself. The subject is an increasingly

active area of research, including work on feature visualization

[Olah et al. (2019), Goldstein et al. (2015)], example-based

reasoning [Wachter et al. (2017), Kim et al. (2016), Goodfel-

low et al. (2014)], surrogate modeling [Ribeiro et al. (2016)],

partial dependence plots [Zhao and Hastie (2019)], and even

applications of game theory [Lundberg and Lee (2017)].

4. Conclusion

While the issue of interpretability has become nearly ubiqui-

tous in all applications of statistical modeling, its relevance

and the requirements of the modeler can vary widely by field.

Frequently the task is too sensitive to be able to rely on the

output of a black box. For other applications, the best choice

is not always clear. In quantitative investing, the reasons for

caring about interpretability are numerous. The financial ana-

lyst should always be concerned about model robustness, for

example, given the fat tails and non-stationarities in his or her

data. On the other side, investors might reasonably demand to

know why they are positioned in a certain way.

Nevertheless, there are simultaneously good reasons for

being interested in less interpretable models. As the field

becomes more crowded, managers may need to push the en-

velope to find new sources of returns. Not to mention, the

increasing size and variety of data that quantitative researchers

are now processing necessitate more complicated methods in

some cases.

There is no easy answer, and the problem is unlikely ever

to be ‘solved.’ As machines become more powerful, these

ideas will need to be better understood, and the trade-offs

managed with careful attention.
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