
Graham Capital Management

Research Note, September 2017

Machine Learning

Erik Forseth1, Ed Tricker2

Abstract
Machine learning is more fashionable than ever for problems in data science, predictive modeling, and quantitative

asset management. Developments in the field have revolutionized many aspects of modern life. Nevertheless, it

is sometimes difficult to understand where real value ends and speculative hype begins. Here we attempt to

demystify the topic. We provide a historical perspective on artificial intelligence and give a light, semi-technical

overview of prevailing tools and techniques. We conclude with a brief discussion of the implications for investment

management.

Keywords

Machine learning, AI

1Quantitative Research Analyst
2Head of Research and Development

1. Introduction

Machine Learning is the study of computer algorithms that

improve automatically through experience.

– Tom Mitchell (1997)

Machine Learning (ML) has emerged as one of the most

exciting areas of research across nearly every dimension of

contemporary digital life. From medical diagnostics to recom-

mendation systems—such as those employed by Amazon or

Netflix—adaptive computer algorithms have radically altered

the way that humans interact with data. Computer vision

systems can recognize our faces, organize our photos, diag-

nose diseases, and even drive our cars. Natural language

processing (NLP) has matured to the point of doing real-time

translation of speech to nearly any major language. More

broadly, these methods have revolutionized how researchers

in academia, industry, and finance understand their domains

and make decisions about the future.

Many experts believe that we are in the midst of an ar-

tificial intelligence (AI) renaissance. And yet, such claims

have been made in the past. The field has seen multiple “hype

cycles:” periods of rapid progress and frenzied excitement, fol-

lowed by disappointing plateaus and cuts to funding (so-called

“AI winters”).

Nevertheless, with the unprecedented convergence of data,

computing power, methods, and software, there is a prevail-

ing sense that the present era is different. Standard modeling

benchmarks are being overturned with astonishing frequency,

while fantastic headway is being made on the theoretical un-

derpinnings of the subject. Many of the developments that

we now regard as being extraordinary will no doubt become

deeply embedded in computer systems of all kinds, eventually

being taken for granted as common and essential tools.

Despite their compelling successes, machine learning

models are still at this stage just computer programs—driven

by the data they are fed—which attempt to find a solution to

some mathematical optimization problem. There remains a

vast gulf between the space of tasks which can be formulated

in this way, and the space of tasks that require, for example,

reasoning or abstract planning. There is a fundamental divide

between the capability of a computer model to map inputs to

outputs, versus our own human intelligence [Chollet (2017)].

In grouping these methods under the moniker “artificial in-

telligence,” we risk imbuing them with faculties they do not

have. Doing so has lead to fears about an “AI takeover,” which

perhaps overestimate the capabilities of intelligent computer

systems conceivable in the near future.

To give an overview of machine learning, we first estab-

lish context by reviewing some of the history of the field,

beginning with very early efforts to think about designing

intelligent machines. We then consider modern concepts and

methods, and hope to clarify some jargon in the process. We

conclude with a brief discussion of implications for invest-

ment management.

2. A Brief History of AI

Here we present a brief history of human efforts to build an

AI. By necessity, we omit a vast amount of important detail,

but we make an effort to capture the dominant historical arc.

Automatons and Reason

The idea of building intelligent machines can be traced back to

(at least) classical antiquity, and is woven into the mythologies

of the Greeks and other advanced civilizations of the period.

These cultures were fascinated by the idea of automatons, or

self-operating machines. Automatons themselves were not

necessarily intelligent; they were depicted as simply following

Machine Learning — 2/8

sets of instructions1. But the Greeks believed that if they

had faith, the automatons could be imbued with intelligence

[Homer and Fagles (1999)]. For the ancients, an AI would

then be a mechanical device that the gods had gifted with

human reason and decision making.

Figure 1. Medeia and Talos: this modern painting depicts an

automaton in Greek mythology. Automatons were some of

the first entities imagined in the search for an AI.

Interest in the topic continued in the European Renais-

sance, with the work of Leibniz, Descartes, and others. Leib-

niz (1685) believed that all rational thought could be reduced

to a symbolic logic (his “calculus ratiocinator”). His work sug-

gested that if such a formalism was found, it could be ported

to a complex automaton, and a truly rational agent could be

built—an AI. Philosophically, this lighted the path to building

an AI using the tools of mathematics and computation.

Leibniz’s efforts to construct his calculus failed, but the

work was picked up in the early 20th century by mathemati-

cians such as Frege, Russell, and Whitehead. Frege introduced

a formal machinery for exploring the foundations of all math-

ematics [Frege (1879)]. Whitehead and Russell (1910) used

these new tools in their seminal work, Principia Mathemat-

ica, where they attempted to describe a simple set of rules

from which all mathematical truths could be derived. These

ambitious goals reignited the debate about whether a formal

foundation for all of human reasoning could be constructed,

and whether Leibniz’s program to build a calculus for human

reason could be completed.

Computability Theory and Turing Machines

In 1928, David Hilbert, inspired by the Principia Mathemat-

ica, proposed what came to be known as Hilbert’s Program.

Hilbert’s idea was to uncover a set of axioms which could

prove the consistency of more abstract branches of mathe-

matics (e.g., topology or analysis) in terms of basic concepts,

ultimately down to elementary arithmetic. Once again, the

1For example, in Greek mythology, Talos was a giant automaton made of

bronze, built to protect Europa in Crete from pirates and invaders. He circled

the island’s shores three times daily.

focus was mathematics, but human rationality was never far

from mind. If this goal could be achieved in the limited scope

of mathematical reasoning, perhaps it could be generalized

to rational choice, decision theory, and general human intelli-

gence.

However, from 1931 to 1936, Kurt Gödel, Alonzo Church,

and Alan Turing all independently published results that ex-

posed the limitations of mathematical logic and formal sys-

tems in general. It seemed clear that Leibniz’s dream of a

calculus ratiocinator simply could not be realized for any

system powerful enough to represent arithmetic.

In order to prove their respective results, Gödel, Turing,

and Church all had to come up with some notion of “effec-

tively calculable” functions. Both Church and Turing used

Gödel’s work on incompleteness theorems to build a formal

concept of computability; for Alonzo Church this was his

lambda calculus (the precursor to the Lisp programming lan-

guage), and for Turing it was his idealized, mechanical Turing

Machine. Church and Turing quickly realized that their sys-

tems covered the same class of functions. They then went a

step further, with the Church-Turing thesis, where they state

that computable functions are those that can be computed—

via a prescribed sequence of steps—by a mechanical device

given arbitrary time and resources. In other words, a func-

tion is computable if and only if it has an algorithm. In this

way, Church and Turing had introduced the notion of an algo-

rithm to the calculation of computable functions, and Turing

had introduced a mechanical device for carrying out these

algorithms2. The modern computer had been born.

Computers and AI

While mathematicians were busy working out computabil-

ity theory, mechanical and electrical engineers (and tinker-

ers) were making considerable progress on building the first

Turing-complete computers3. In 1837, Charles Babbage and

Lady Ada Lovelace released a design for the “analytical en-

gine,” which would have been the first general purpose com-

puter4. Its design—the actual machine wasn’t built until many

years later—won Babbage the moniker of “father of the com-

puter,” and Lady Lovelace is credited with writing the first

algorithm to be carried out on such a device.

2Turing firmly believed that the human mind was a Turing machine, and

the functions underlying intelligence were computable by his device. He, and

many others at the time, saw this device as the means by which to create an

AI. In 1950, he even introduced a test to determine whether a mechanical

device exhibited human like intelligence [Turing (1950)].
3“Turing-complete” simply means that the computer could calculate all

the functions identified by computability theory as being computable. Most

modern, widely-used programming languages are Turing-complete.
4Lady Lovelace famously dismissed the idea that the analytical engine

could be used to build an AI; however, that didn’t keep others, such as Turing

himself, from considering such a possibility.

Machine Learning — 3/8

Figure 2. A model of Babbages analytical engine.

The first electronic computers were developed by the

British and US militaries for use in code-breaking during

WWII5. Turing-complete digital computers were available

by the 1950s, and a large community developed around the

notion that an AI could be built from these devices. Philoso-

phers, mathematicians, psychologists, and neuroscientists all

debated the possibility that human intelligence might soon be

replicated.

With theory and technology coming together, computer

scientist John McCarthy6 called for a Summer Research Project

on Artificial Intelligence to be held at Dartmouth College in

the summer of 1956. McCarthy coined the term “Artificial

Intelligence” to encompass the diverse set of disciplines com-

prising the burgeoning effort. The conference brought together

some of the greatest minds of the age, including Marvin Min-

sky, Claude Shannon, Allen Newell, and Herbert Simon. The

result was a perhaps misguided optimism, and a renewed de-

termination to build “a Machine that Thinks” [Solomonoff

(1956)].

The Linear Perceptron

By 1957, material progress had been made in the form of

Frank Rosenblatt’s perceptron algorithm, the first trainable

classifier to be implemented via computer. Given a set of data

points ostensibly belonging to two classes (say, “0” and “1”),

the perceptron is a program which learns how to distinguish

between the two groups by fitting a linear separating hyper-

plane (imagine an infinite sheet dividing the cloud of points

into two distinct regions). Though simple, the perceptron

proved to be an effective means for learning how to separate

two classes of data, albeit in rather contrived settings. It was

5The British Colossus was the world’s first electronic programmable

digital computer, famously used by British intelligence at Bletchley Park to

attack the German encryption system Enigma. It was not, however, a Turing-

complete machine. A short while later, the US built the more powerful

Electronic Numerical Integrator and Computer (ENIAC), which was in fact

Turing-complete.
6Considered to be one of the fathers of AI, McCarthy was an assistant

professor at Dartmouth College at the time. He went on to work as a full

professor at Stanford University from 1962 until his retirement in 2000.

used, for example, to distinguish pictures of cats from dogs7.

With this model, Rosenblatt had built the first and most

basic kind of artificial neural network (about which we’ll

have more to say later on), and he (correctly) believed that it

could become the foundation for work on more sophisticated

computer learning systems. This generated a lot of excite-

ment in the burgeoning field, and for the next decade research

moved along at a considerable clip—due in part to significant

in-flows of money from DARPA and other organizations.

Researchers made bold statements about the progress of

AI. In 1958, Simon and Newell declared that “within ten years

a digital computer will be the world’s chess champion”; Mar-

vin Minsky stated in 1967 that “within a generation the prob-

lem of creating an artificial intelligence will be substantially

solved.” Unfortunately, this exuberance was soon tempered

by a series of negative results. In 1969 Papert and Minsky

published a paper demonstrating the significant limitations

of perceptrons. This effectively ended research into artificial

neural networks.

By 1974, DARPA and the broader funding community had

begun moving away from AI-based projects, weary of sys-

tematic over-promising and under-delivering. These setbacks

inaugurated the first of the major AI winters.

Figure 3. Rosenblatt with the perceptron machine.

Machine Learning: A Re-branding

The 1980s and early 1990s saw more failures and setbacks,

including the widespread abandonment of “expert systems,”

rules-based programs which were too inflexible to be of lasting

value. There was a clear need by this point to redefine the

scope of the field, and—for the sake of funding—a need to

essentially “re-brand” the field. It was no longer fashionable

to make grandiose claims about AI; researchers settled instead

for progress on what came to be known as “machine learning,”

or the design of computer programs which are able to learn

automatically from data.

These new methods, born largely out of statistics, op-

timization, and functional analysis, proved to be effective,

especially as the availability of digitized data became ever

greater. There were a number of important developments

during this period.

7Rosenblatt imagined that a similar machine might one day be sent to

space to “take in impressions for us” [Mason et al. (1958)].

Machine Learning — 4/8

Neural Networks and Backpropagation

Neural networks—generalizations of the simple perceptron

described earlier—were becoming a powerful tool in both su-

pervised learning (the problem of learning to predict specific

outputs given certain input data) and unsupervised learning

(the problem of automatically extracting meaningful patterns—

features—from data, irrespective of any relationships with

associated target quantities). A neural network is merely the

composition of many simple mathematical operations—or lay-

ers—applied to input data. Each layer is typically some kind

of linear transformation followed by a (differentiable) nonlin-

earity (see Fig. 4). The network represents nothing more than

a series of smooth geometric transformations, which, when

linked together, give a very complicated transformation of

the input data. (Imagine the data as a cloud of points being

successively stretched, compressed, and rotated into a form

that reveals some hidden underlying structure.)

The power of these objects is in their status as universal

approximators. They are able to model extremely complex

phenomena that simply cannot be represented by other means.

The parameters (or weights) of the network must be learned

by the computer, which turns out to be a nontrivial problem. A

major breakthrough came with the introduction of backpropa-

gation in the 1980s [Rumelhart et al. (1986), le Cun (1986)].

An application of the chain rule for derivatives in calculus,

backpropagation is a procedure by which the weights of the

network are iteratively “pushed” toward a desired configura-

tion. With this new scheme, networks could be trained more

reliably and much more quickly than had previously been

possible. Variations of backpropagation are used to this day

to train very deep networks (i.e. networks with many stacked

hidden layers).

(a) linear function (b) nonlinear function

Figure 4. A linear function changes according to its inputs in

a constant fashion. A nonlinear function, on the other hand,

has a varying response.

Statistical Learning Theory and Kernel Methods

Vladimir Vapnik and others established statistical learning

theory, laying a formal groundwork for supervised learning

[Vapnik (1995)]. Particularly important here are the notions

of capacity and regularization, or, respectively, the represen-

tational power of a learning algorithm vs. control over its

tendency to overfit. Overfitting refers to the problem of a

model “memorizing” the data it was trained on, but outputting

meaningless results for unseen data. It is a serious and often

subtle issue for any sufficiently flexible algorithm.

Vapnik and collaborators had meanwhile introduced the

support vector machine (SVM), making vital use of what

came to be known as the kernel trick. Kernel methods are

an elegant class of flexible, nonlinear models with explicit

capacity control, so named for their use of “kernel functions.”

Kernel functions are mathematical constructs which output a

measure of similarity in an implicit, high (perhaps infinite) di-

mensional feature space, and the kernel trick is a prescription

for translating an intractable problem in the original domain

to a simple problem in a high dimensional domain (Fig. 5).

Figure 5. In two dimensions, the blue and orange data are

not linearly separable—we cannot draw a straight line which

separates one set of points from the other. Projecting the

data to a higher dimension, however, reveals extra structure.

Separating the points is trivial in this new space; this is the

intuition behind the kernel trick.

SVMs are equivalent to a very specific kind of single-layer

neural network. They became quite popular in the 1990s and

2000s thanks to a number of attractive properties. An SVM

is learned by means of a convex optimization, meaning it ad-

mits a unique, globally optimal solution. By contrast, neural

networks generically admit a combinatorially large number of

“local” solutions; there is no single best set of model parame-

ters8. It was thought that networks were susceptible to getting

“trapped” in poor local solutions during training. Although

they continued to play an important role in many applications,

neural networks fell largely out of favor until the late 2000s.

Boosting, Bagging, and Ensembles

Alongside the developments happening in the neural networks

and kernel communities, a set of practical and powerful results

were being worked out for ensembling models—the practice

of combining multiple learning algorithms to produce better

results than those obtainable by any single model. Ensemble

theory deals with the question of how best to construct a set of

base learners, and then optimally combine them into a single

overall model. Doing so turns out to be less straightforward

than simply coming up with any arbitrary combination of

constituent models.

8The error of a model with respect to its target values may be pictured

as a hilly landscape in a high-dimensional space. The parameters of the

model form a kind of coordinate system for this landscape, and the error is

a measure of altitude. We wish to find the low-lying valleys of this space,

which correspond to regions of small error. A “global” minimum refers to a

point lower than any other, whereas a “local” minimum is only lower than

points in an immediate neighborhood.

Machine Learning — 5/8

A key idea here is that of the bias-variance-covariance

tradeoff. If one were to simply average the predictions of

N sub-models, the expected error of the ensemble would

depend on the average bias, variance, and covariance of the

sub-models as

E {error} = bias +
1

N
var +

(

1−
1

N

)

covar

where the bar indicates an average over models [Brown et al.

(2005)]. The bias of each model is the expected amount by

which its predictions will tend to differ from the “true” values

it aims to match (the targets). Variance is essentially the

opposite of the precision of a model, giving a measure of

how “noisy” predictions are relative to the targets. Finally,

the covariance term here describes the degree to which the

constituent models behave similarly or differently from one

another.

One of the implications is that the underlying models

must have some diversity. Combining many diverse (but, on

average, unbiased) models will have the effect of washing

out some idiosyncratic variance, while hopefully reinforcing

any predictive edge. (There is a deep analogy here with the

relative fitness of hybrid organisms having a heterogeneous

genetic makeup.)

A great many approaches have been proposed for building

ensembles. Bagging is a procedure for fitting base models to

random subsets of the data, so that each model gets a different

view of the problem. Boosting is a more advanced form of

bagging, in which learners are trained in rounds such that

subsequent learners focus more heavily on training examples

which were incorrectly learned at the previous stage. Boosting

is less robust to very noisy data, since the ensemble may end

up focusing on instances which simply cannot be reliably dealt

with. Model blending or stacking is the practice of training

higher-level models on the outputs of base models; this can

be done recursively to obtain layered networks which are not

so fundamentally different from deep neural architectures.

Ensemble methods comprise a broad class of standard

techniques in statistical modeling. Nearly all winning solu-

tions to popular machine learning competitions, such as the

Netflix Prize or the well-known contests hosted by Kaggle9,

make use of ensembles of models.

The Modern Deep Learning Renaissance

Kernel methods enjoyed a period of ubiquity, and are still

considered to be powerful tools for a wide array of problems.

However, they are ultimately rather limited in their ability

to find anything other than generic nonlinear features, which

do not generalize far beyond the training data. Despite the

9The Netflix Prize challenged contestants to improve upon Netflix’s own

algorithm for predicting user movie ratings, offering a $1 million prize for

any team which could demonstrate a significant improvement. Kaggle—a

startup acquired by Google in March of 2017—regularly hosts data science

contests awarding large cash prizes. Competitions range from identifying

cancerous lesions in high-resolution lung scans to to predicting the outcomes

of the March Madness college basketball tournament.

Artificial Intelligence

Machine Learning

Deep

Learning

Figure 6. The distinction between topics is not always made

clear in discussions about AI. “Deep learning” refers to a

particular branch of machine learning, itself a subset of efforts

to develop and understand AI.

significant achievements of the 1990s and 2000s, machine

learning in practice still required careful, domain-specific

feature-engineering by human experts. That is, specialists

needed to spend significant time and effort in thinking about

how best to transform and represent their data before feeding

it to a model (such as an SVM), such that the model could

best extract sought-after relationships.

Deep neural networks (DNNs)—neural networks with

many stacked hidden layers—are able to compose meaningful

features automatically. The model’s hidden layers each learn

some geometric transformation of the previous layer; when

these layers are chained together, the model builds up hier-

archical levels of abstraction, discovering fundamental and

invariant features of the data [LeCun et al. (2015)].

Figure 7. A neural network with five hidden layers. “Hidden

layer” refers to any set of operations happening in between

the input (yellow) and the final output (red).

The ability of DNNs to carry out automatic, multi-stage

feature engineering had long held promise as a means for cir-

cumventing expensive human involvement in this stage of the

learning process. And yet, beset by the difficulties involved in

training deep networks, researchers’ hopes had been tempered.

This began to change after a series of seminal results starting

in 2006, and continuing especially in the 2010s.

Machine Learning — 6/8

DNNs now come in many flavors, depending on their

architecture and the context in which they are deployed. Con-

volutional networks, whose hidden layers learn discrete local

filters, have met with fantastic success in problems whose

data has some local context—images, speech, and text being

prime examples. Recurrent neural networks are useful for

processing sequentially ordered data10. Deep reinforcement

learning leverages DNNs for the problem of an agent learning

by trial-and-error interactions with its environment, as for

robot locomotion11.

A host of factors underlaid the dramatic progress. Re-

searchers made use of specific nonlinearities in their networks,

which facilitated faster and more reliable training. New and

more powerful forms of model regularization were developed.

Crucially, there was an explosion in available data and process-

ing power. It turned out that many of the issues encountered in

fitting these models can be avoided simply by having a suffi-

ciently large body of training data. Meanwhile, models could

be trained faster—by orders of magnitude—using computing

architectures based on graphics processing units (GPUs). As

for the problem of local solutions, it was realized that these

usually have similar (and close to globally optimal) quality.

With better architectures, more data, and faster computers,

DNNs surpassed benchmark after benchmark on standard

datasets in disparate fields. In most cases, in fact, DNNs

made quantum leaps forward relative to prior state-of-the-art

methods.

As an example, consider the evolution from IBM’s Deep

Blue to Google DeepMind’s AlphaGo system. Deep Blue

famously bested chess grandmaster Garry Kasparov in a se-

quence of matches from 1996-1997. Celebrated as a milestone

in AI, Deep Blue was not really an intelligent system. It would

search among possible moves and evaluate their quality using

a chess-specific reward function. Its strength came mainly

from its massive processing power; in 1997, Deep Blue was

one of the most powerful supercomputers in the world. In

March 2016, AlphaGo beat Lee Sedol in a five-game series of

the ancient Chinese board game Go. Go’s larger board makes

the space of possible configurations too large for brute-force

searches like those of Deep Blue. AlphaGo instead used con-

volutional neural networks to process the board as an image

and evaluate the state of the game, and reinforcement learning

to improve its own play [Silver et al. (2016)].

3. Machine Learning in Finance

Unsurprisingly, professionals have been eager to bring ma-

chine learning methods to bear in quantitative finance. The

potential applications are plentiful. ML systems might be

10Recurrent networks have cyclical connections between units, allowing

them to model temporal behavior.
11Reinforcement learning is an older field, dating back to optimal control

for dynamic systems in the 1950s and 1960s (for e.g. calculating aerospace

trajectories). Deep reinforcement learning refers to a modern variant which

uses many-layered (i.e. deep) neural networks for some portion of its calcula-

tions.

able to uncover subtle nonlinear effects in asset returns, where

more traditional methods (e.g., linear autoregressive models)

might fail. Many problems in finance boil down to time series

prediction, for which one might consider using temporal con-

volutional networks or recurrent neural networks. The idea of

ensembling models—combining multiple independent models

to reduce predictive variance—is a natural thing to do here.

In fact, ensembles are intimately related to portfolio theory;

many interesting results for ensembles were first established

in the context of portfolios of financial assets.

Even tried and true investment styles can benefit from

more sophisticated approaches founded on ML. Identifying

long-term trends in markets, for example—or predicting when

trends will fall apart—is not a simple problem. Anticipating

swings in market volatility is another challenging task that

may be better attacked with newer techniques rather than,

say, classical GARCH models [Rizvi et al. (2017)]. Machine

learning has given us many tools for dealing with data in high

dimensions and having many degrees of freedom, as is the

case for long-short equity portfolios. With computer programs

now able to process and interpret text in real-time, news- and

event-based trading is being revolutionized. Apart from the

direct applications, advances in ML also contribute indirectly

to investing; dealing with spurious correlations or estimating

covariance matrices are problems central to both fields, for

instance.

From one perspective, deploying computerized statistical

models in investment management may seem like an obvious

choice. Compared with human traders, computers are pas-

sionless, tireless, and better at boring through mountains of

data in order to find meaningful, trade-able market signals.

For better or for worse, the reality of the situation is more

complicated. Many recent breakthroughs in machine learn-

ing are due to the recent availability of vast, clean datasets.

Financial time series, on the other hand, constitute relatively

small datasets with very low signal-to-noise ratios. Further,

they are largely nonstationary; the generating distributions for

these data change over time. One can always expect to see

new—and arguably fundamentally unpredictable—behavior

in the markets. The risk of over-fitting a model to historical

observations, a concern for any systematic trader, is magnified

here. Finally, managers must come to terms with a certain

amount of opacity when relying on a black-box trading algo-

rithm. On the one hand, there would be little point in invoking

these methods if they were only capable of finding patterns

that happen to be intuitive to humans; on the other hand, one

must have confidence that the model is not fitting to pure noise.

Any attempt to apply these methods in a naı̈ve, out-of-the-box

fashion would be badly misguided.

With these enormous caveats in mind, there remains ample

potential for disruption. In the hands of careful practitioners,

machine learning provides a powerful toolset for systematic

investing. The industry is in the midst of a veritable gold-rush

for quantitative talent. No doubt there will be hand-wringing

and soul-searching over the efficacy of these approaches. And

Machine Learning — 7/8

yet, progress is irreversible. Whether or not they seem novel

today, some subset of the methods we have described will be-

come canonical tools in statistical modeling and data science.

They will likewise find their place in the universe of investing.

References

G. Brown, J. L. Wyatt, and P. Tin̆o. Managing diversity

in regression ensembles. Journal of Machine Learning

Research, (6):1621–1650, 2005.

F. Chollet. The limitations of deep learning.

http://blog.keras.io/the-limitations-of-deep-learning.html,

2017. Accessed: 2017-08-09.

G. Frege. Begriffsschrift: eine der arithmetischen nachge-

bildete Formelsprache des reinen Denkens. Halle, 1879.

Homer and R. Fagles. Iliad. Cambridge, MA., Harvard

University Press, 1999.

Y. le Cun. Learning processes in an asymmetric threshold

network. Disordered systems and biological organization,

pages 233–240, 1986.

Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature,

(521):436–444, 2015.

G. Leibniz. The Art of Discovery. Wiener 51, 1685.

H. Mason, D. Stewart, and B. Gill. Rival. The New Yorker,

(Dec. 6, 1958), 1958.

T. Mitchell. Machine Learning. McGraw-Hill International

Editions. McGraw-Hill, 1997.

S. A. A. Rizvi, S. J. Roberts, M. A. Osborne, and F. Nyikosa.

A novel approach to forecasting financial volatility with

gaussian process envelopes. ArXiv e-prints, 2017.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning

representations by back-propagating errors. Nature, (323):

533–536, 1986.

D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre,

G. van den Driessche, J. Schrittwieser, I. Antonoglou,

V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe,

J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap,

M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis.

Mastering the game of go with deep neural networks and

tree search. Nature, (6529):484–489, 2016.

R. Solomonoff. Personal notes. 1956.

A. Turing. Computing machinery and intelligence. Mind,

(236):433–460, 1950.

V. Vapnik. The Nature of Statistical Learning Theory.

Springer-Verlag New York, 1995.

A. N. Whitehead and B. Russell. Principia mathematica.

Cambridge: Cambridge University Press, 1910.

Machine Learning — 8/8

Legal Disclaimer

THIS DOCUMENT IS NOT A PRIVATE OFFERING MEMORANDUM AND DOES NOT CONSTITUTE AN OFFER TO SELL, NOR IS IT A

SOLICITATION OF AN OFFER TO BUY, ANY SECURITY. THE VIEWS EXPRESSED HEREIN ARE EXCLUSIVELY THOSE OF THE AUTHORS

AND DO NOT NECESSARILY REPRESENT THE VIEWS OF GRAHAM CAPITAL MANAGEMENT. THE INFORMATION CONTAINED HEREIN IS

NOT INTENDED TO PROVIDE ACCOUNTING, LEGAL, OR TAX ADVICE AND SHOULD NOT BE RELIED ON FOR INVESTMENT DECISION

MAKING.

