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Abstract

Signal processing is a subject whose importance and potential may sometimes be overlooked. We often hear
about advances in familiar domains such as computing, communications, and artificial intelligence, but it is
signal processing which lies at the heart of these fields, and which facilitates many other cutting-edge research
endeavors and everyday technologies. The objective of this article is to shed light on this discipline by touching
upon the historical developments, providing a qualitative overview of the techniques involved, and elaborating
on relevant practical applications. The article concludes with a light discussion of the applications of signal
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processing to systematic trading, where it is uniquely well-suited to the analysis of financial time series.
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1. Introduction
Signal Processing is the science behind our digital life.

— IEEE Signal Processing Society.

Signal processing (SP) is a branch of electrical engineer-
ing that plays an indispensable role in powering our modern
(digital) world—enabling nearly all of the technologies (e.g.,
radios, computers, videos, cellular phones) that we use and
rely on in our everyday lives. SP played a central role in
the Digital Revolution' which marked the onset of today’s
constantly-evolving Information Age, highlighting the im-
portance of this discipline and its necessity in fundamental
scientific advances. An unknown field to many, the term “Sig-
nal Processing” is often misconstrued. SP does not refer to the
transmission of signals? via telephone lines or via radio waves,
but rather SP refers to the set of mathematical techniques and
algorithms developed for analyzing and altering signals to
meet task-driven applications (e.g., improving signal quality,
or capturing information in a measured signal). SP judiciously
interacts with three domains, illustrated in Figure 1, to facili-
tate the data acquisition to interpretation process.

The development of modern (digital) SP essentially began
during World War II, when a number of researchers con-
tributed towards a mathematical theory of signals and noise,
notably Norbert Wiener®. Prompted by Wiener’s emphasis
on the statistical nature of communication, in 1948 Claude

la k.a. the Third Industrial Revolution: 1960s-1970s

2Functions of time (represented as waves) that convey information about
some phenomenon that can be stored in a digitized format, e.g., sound, images,
sensor measurements, electrocardiogram (EKG) recordings, textual data.

3 An MIT faculty member who worked on the theory of Brownian motion,
prediction for stationary time-series, and became known in the wider scientific
community for Cybernetics—the scientific study of how humans, animals
and machines control and communicate with each other.
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Figure 1. SP is at the intersection of three main domains: 1)
signals are produced from the Physical world, 2) the perfor-
mance of perceived signals are evaluated via Mathematics,
and 3) the associated algorithms are efficiently implemented
via Informatics

E. Shannon* made landmark contributions for quantifying
the reliable transmission of information over imperfect com-
munication channels (like phone lines or wireless networks).
However, it was not until the development of integrated-circuit
technologies—interconnected electronic components on a sin-
gle wafer of silicon or other semiconductor—and the subse-
quent proliferation of computers in the 1960s and onwards,
that Shannon’s work became widespread and influenced a
generation of communication engineers.

4 Another MIT faculty member, who conceived and laid the foundations
for Information theory. Shannon made contributions to the problem of
electrical switching (i.e. logically manipulating binary digits: 0’s and 1°s)—
the nervous system of digital computing. His work has also been fundamental
in developing the electronic communications networks that now envelop the
Earth.



The colossal increase in computing power since the 1960s
[Fig. 2] has rendered SP applicable to a variety of economically-
relevant fields. Applications include wireless communication
(phones, radars, satellites), health (e.g. localizing epileptic
sources in the brain, echography, Magnetic-Resonance Imag-
ing), transportation systems (assimilating data from noisy sen-
sors deployed in robots, self-driving vehicles, aviation, smart
grids, smart cities), and finance (forecasting the movements
of asset prices, evolving financial portfolios).
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Figure 2. The evolution of computational power-to-cost ratio:
the power-per-cost of computing technologies has been
steadily increasing by a factor of about 1000 every 20 years.
[Bostrom (2003)]

The remainder of this article is organized as follows. We
first present the essentials ingredients of SP, from which some
of the widely used modern SP methods have been built. Next,
we review the prevailing techniques and present the results of a
simulation which illustrates a practically-meaningful applica-
tion. We conclude with a brief discussion of the implications
for investment management.

2. Elements of Signal Processing (SP)

Here we qualitatively discuss a couple of the basic ingredients
and mathematical preliminaries for SP.

The Fourier Transform

The roots of SP arguably begin with Joseph Fourier. Fourier
proposed a set of mathematical techniques—including the
Fourier Transform (FT)—for representing and working with
signals in the frequency-domain. That is, he developed a way
to decompose signals into mixtures of fundamental, periodic
components, each of which oscillates at some fixed rate (or
frequency). This representation allows for a simplification of
complicated mathematics, and greatly facilitates the under-
standing of many intricate phenomena arising in physics and
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engineering. However, it was not until 1965 that the FT be-
came computationally tractable for most practical tasks, when
James Cooley and John Tuckey proposed the Fast Fourier
Transform (FFT)’—an algorithm that immensely reduced the
calculation cost of the FT. The FFT algorithm was an oppor-
tune development, as mass production of integrated circuits
had recently begun. Fourier methods became ubiquitous there-
after. This is an example of the concurrent development of
theory and rapid growth in computing power, which enabled
many previously unimaginable feats. Examples include the
live television broadcast of the first steps on the moon in
1969, production of the Computerized Tomography scanning
(CT scan) device in 1971, and the development of the cele-
brated Kalman Filter, which solved problems in missile and
aerospace tracking and guidance, radar, sonar, etc.

Nyquist Sampling Theorem (NST)

Another cornerstone of SP is the Nyquist Sampling Theo-
rem (NST), which establishes a fundamental bridge between
physically-derived continuous-time signals (referred to as
“analog signals”) and computationally-tractable discrete-time
signals (referred to as “digital signals”). The importance of
this fundamental connection is hard to overstate, especially
because manipulating digitized signals is much faster and
more efficient compared with operations on traditional ana-
log signals. It was known that an analog signal could be
re-constructed from a finite digitized representation when the
analog signal is effectively band-limited; that is, when it does
not contain certain frequency components [Nyquist (1928)].
However, it remained to be shown that the analog signal could
be constructed perfectly (i.e., without any loss of informa-
tion) and uniquely from the digitized counterparts. This gap
and other fundamental principles of Information Theory were
established in [Shannon (1948a,b, 1949)].

3. Signal Processing (SP) Techniques

The goal here is threefold: 1) to present an overview of
the widely used SP techniques, 2) to discuss a practically-
meaningful application of the methods introduced, and 3) to
discuss ties between SP and another area of active research,
Machine Learning (ML).

Filters

A filter originally referred to a physical device that selected
certain frequencies (or a range of frequencies) from an analog
signal while suppressing others. However, upon the advent
of the digital-era in the 1960s, the term digital-filter came to
refer to any of a class of computer algorithms which perform
mathematical operations on digital (discrete-time) signals in
order to meet user-defined signal specifications. Many digital
filters employ the efficient FFT algorithm (discussed in the

5The FFT was rated, by the IEEE society, to be one of the top 10 algo-
rithms developed in the 20" century.



previous section) in order to identify the frequency spectrum®

of a signal, which can then be manipulated in various ways.
There also exists a broad class of algorithms which fall under
the umbrella of adaptive filtering, which can be used for
applications such as system identification and control. These
methods are extremely useful for inferring the properties of
signals which are corrupted by noise and/or which are time-
varying.

The design and implementation of digital filters poses
many practical challenges, and they continue to be a topic of
active research. Their importance is apparent from their om-
nipresence in everything from common electronics to cutting-
edge Al technologies.

Denoising

In the real world, physical signals are always corrupted by
some amount of noise. An important application of SP in-
volves denoising applications—attenuation of noise in order to
reveal some “true” underlying information or dynamics. De-
noising is vital in all manner of applications, from cell phone
communication to scientific experiments. For example, 2015
saw the first detection of a gravitational wave signal produced
by the merger of a pair of black holes. This was a landmark
event, confirming predictions that Einstein had made a century
prior and inaugurating a new era in observational astronomy
and astrophysics. These detections are extremely subtle, and
would not be remotely possible without the application of
denoising and template-matching techniques from SP.

Some denoising operations can be quite simple, including
smoothing operations’. These correspond to very simple low-
pass filters, which block the high-frequency components of
a signal while letting the low-frequency content “pass” with
little or no modification. More sophisticated denoising ap-
proaches include energy-transfer filters that move undesired
noise components into (or split them across) various frequency
regimes, or the widely used Kalman Filter which facilitated
trajectory estimation for the Apollo program.

Prediction

Many of the applications described before have been con-
cerned with cleaning or transforming data in useful ways.
However, SP methods have also been developed for predic-
tion problems. Indeed, the field of Adaptive Signal Processing
[Haykin (2013)] is concerned with the development of digital
filters with predictive capabilities. In this case the filter is a
recursive algorithm with a feedback loop which allows it to
learn (in a sequential fashion) from data in order to minimize
the error between the filter’s output and some specified target.
There is virtually no difference between these kinds of models
and what’s now referred to as machine learning (ML), except

5The representation of a signal waveform as a (possibly infinite) sum
of periodic (sinusoidal) functions—each with different magnitude and fre-
quency.

7Smoothing refers to taking a group of adjacent points in the original data
and performing an averaging procedure, thereby eliminating unimportant
high-frequecy artifacts and capturing the important patterns in the data.
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that ML commonly refers to a set of newer methods which
have come into favor in recent decades for various reasons.

A Simple Experiment

Let’s consider a simple simulation to make some of these
ideas concrete. We’ll apply the aforementioned techniques to
denoise a chirp signal, which has important applications in
sonar, radar, and spread-spectrum communications.

At a discrete time-step k with frequency f(k), a chirp sig-
nal is defined as the superposition of a periodic (cosine) signal
cos(f(k)) and a white noise signal w(k)—cos(f(k)) + w(k)-
such that the two signals are uncorrelated (i.e., lack a deter-
ministic relationship) with one another. The goal here is to
predict the underlying clean periodic signal at the subsequent
time-step cos(f(k + 1)) (i.e., first subplot of Figure 3) from
the noisy corrupted signal (i.e., middle subplot of Figure 3).

The underlying prediction problem is exacerbated by the
fact that the time-varying frequency f(k) is unknown. Never-
theless, the ASP scheme touched upon in the previous subsec-
tion can be applied to the raw noisy data in order to reliably
predict the subsequent values of the periodic signal with re-
duced noise levels, as illustrated in the last subplot of Figure 3.
Further, it is crucial to note that the success of this procedure
rests upon the fact that the coherent periodic (cosine) signal
we are trying to predict is uncorrelated to the white noise
signal that we aim to cancel off.
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Figure 3. Denoising the chirp signal.

Relationship to Machine Learning (ML)
Machine Learning (ML) describes the computerized imple-
mentation of statistical predictive modeling techniques for
inferring relationships in data. The increasing availability of
cheap computational power has lead to ML enjoying immense
success in a variety of crucial applications, among them credit
card fraud detection, the control of autonomous robots (cars,
drones), stock market analysis, and tumor detection.
Recently, many ML techniques have been applied to vari-
ous problems in SP, and vice versa, blurring the lines between



the two disciplines and enabling exciting applications. The
two following examples give a flavor of the limitless possibili-
ties:

e Re-creating hand movements from imagination (to as-
sist people with limited mobility): SP de-noises brain
signals and analyzes patterns in these signals. ML then
attempts to distinguish different signal patterns (e.g., if
the person is imagining vs. simply resting) and provide
commands to the actuating device.

e Real-time automatic speech recognition and transla-
tion (to bridge language barriers): SP extracts relevant
patterns in audio signals from a sender, then ML rec-
ognizes the patterns (using models built on historical
data and experience) and makes appropriate (language-
specific) recommendations for the recipient.

These examples illustrate a common two-step process: 1)
SP applies rigorous techniques to identify meaningful infor-
mation (or features) in signals (i.e., a process referred to
as feature extraction), and 2) ML algorithms process these
information-rich features in order to make forecasts or deci-
sions about unseen data. It is worth noting that the quality of
features often largely dictates the success of an ML algorithm;
even state-of-the-art modeling techniques may be unable to
make up for shallow or irrelevant input features.

Of course, the relationship between SP and ML is even
deeper than that illustrated by this generic pipeline. Many of
the mathematical techniques originally developed for SP have
found important applications in ML, and the recent explosion
of popularity in ML has lead to fundamental research with
implications for SP.

4. Applications to Systematic Trading

Financial time series form an interesting subset of time series
datasets, and pose a number of special challenges for practi-
tioners hoping to investigate or model their behavior. They are
typically expensive to acquire, and tend to be relatively small
(there are many fewer data points of daily S&P closing prices
than there are, say, images of cats on the internet). Moreover,
they’re messy. They often suffer from small signal-to-noise
ratios, and are largely nonstationary—that is, the generating
distributions of the datasets are not constant through time.
These limitations imply that great care must be taken when
applying various prediction techniques, e.g., traditional time-
series forecasting tools and ML algorithms, as there is an
increased risk of overfitting to random noise and spurious
correlations. Furthermore, the majority of ML algorithms are
not inherently designed to cope with sequential data. They
can be used for time series prediction when the effects are
stationary, and may even be useful in non-stationary settings
when applied in an appropriate rolling fashion, but—with
some exceptions—they typically do not take advantage of any
ordering of the data.
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It should therefore come as no surprise that SP methods
comprise an extremely useful set of tools for this domain.
As we’ve seen, they are naturally suited to handling sequen-
tial data, especially very noisy sequences. They provide ap-
proaches for transforming and representing time series in en-
lightening ways. Adaptive SP methods have been developed
specifically for time series with non-stationarities. Finally, just
like other statistical learning algorithms, prediction models in
SP can be regularized to prevent overfitting. Of course, we are
not proposing that these tools offer any kind of magic solution.
Rather, we simply argue that they are at least as useful as
more fashionable techniques, and often underappreciated by
the investing public.
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